Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions
نویسندگان
چکیده
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differentialdifference equations, difference equations and cellular automata (ultra-discrete equations). 25 February 2008 PACS numbers: 02.30.Jr, 05.45.Yv To be submitted to : J. Phys. A: Math. Gen.
منابع مشابه
MHF Preprint Series
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions Abstract. We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable s...
متن کاملResonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differentialdifference equations, difference equations and cellular automata (ultra-discrete equations).
متن کاملar X iv : s ol v - in t / 9 70 80 01 v 1 4 A ug 1 99 7 Two - dimensional soliton cellular automaton of deautonomized Toda - type
A deautonomized version of the two-dimensional Toda lattice equation is presented. Its ultra-discrete analogue and soliton solutions are also discussed. PACS: 03.20.+i; 03.40.Kf; 04.60.Nc
متن کاملand Casorati Determinant Solutions to Non - autonomous 1 + 1 Dimensional Discrete Soliton Equations ( Expansion of Integrable Systems
Some techniques of bilinearization of the non-autonomous 1+1 dimensional discrete soliton equations are discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete Lotka-Volterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly. §
متن کاملBilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations
Some techniques of bilinearization of the non-autonomous 1 + 1 dimensional discrete soliton equations is discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete LotkaVolterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008